SLAM简介 :
SLAM是 Simultaneous Localization and Mapping 的缩写,中文译作 " 同时定位与地图构建 "。它是指搭载特定传感器的主题,在没有环境先验信息的情况下,于运动过程中建立环境的模拟,同时估计自己的运动。如果传感器主要是相机,那就称之为 " 视觉SLAM "。
SLAM 的目的是为了解决 " 定位 " 与 " 地图构建 " 这两个问题。也就是说,一边要估计传感器自身的位置,一边要建立周围环境的模型。这就需要用他到传感器的信息。用相机作为传感器时,我们要做的就是根据一张张连续运动的图像(它们形成了一段视频),从中推出相机的运动,以及周围环境的情况。
我们眼中的世界在计算机中是一个个由数字排列而成的矩阵(Matrix),就像电影《黑客帝国》中的场景。我们要解决的就是让计算机通过这种方式 " 理解 " 我们现在的世界。
第一讲习题:
1.有线性方程 Ax = b,若已知 A,b,需要求解x,该如何求解?这对 A 和b有哪些要求?
解:
首先考虑非齐次线性方程的情况,即 b 不是 0 。
对 A 和 b 组成的增广矩阵进行初等行变换。
如果 R(A) < R(A,b) 则无解,
如果 R(A) = R(A,b) = n ,则有唯一解,然后将增广矩阵化成行最简型矩阵,最后写出元方程组同解方程组,可得唯一解。
如果 R(A) = R(A,b) < n ,步骤同上,求得解系。
对齐次线性方程的情况,即 b = 0 。
对系数矩阵进行初等行变换。
如果 R(A) < n ,则有非零解,写出元方程组同解方程组。
如果 R(A) = n ,则只有零解。
2.高斯分布是什么?它的一维形式是什么样子?它的高维形式是什么样子?
所谓高斯分布就是通常所说的正态分布,一维正态分布概率密度函数:
高维形式即二维正态分布,概率密度函数: